
AD-A122 438 INVESTIGATION 0 THE ADA LANIMI - NPLUMINTATION Of THE 1/1
HELLENIC COMAND CONTEOL AND |I OUATIOW SySTEU(U)
NAVAL POSTOAUAT. SCHOOL MNROY CA A MOUTSOTOLIS

UNCLASSIFIED RJN 52 P/g 0/2 N I

son /III
IIIIIIIIIIIIII
IIIIIlffllffllffllff

11111 1.0 I& 128 2

l intini , m _ - _ "

Jill1 11.

nII I lu In l U I I .. I m l

MICROCOPY RESOLUTION TEST CHART

NA'rFONAL OUREAU OF STANDARDS 963-

4

~I

NAVAL POSTORADUATE SCHOOL
Monterey, California

rw THESIS

INVESTIGATION OF THE ADA LANGUAGE
IMPLEMENTATION OF THE HELLENIC

COMMAND CONTROL AND INFORMATION SYSTEM

Apostolos Xoutsotolis aLE C' 7

June 1982 DEC 1 4 1982

~A

SThesis Advisor: U. R. Rodres

Approved for public release; distribution unlimited.

8 -;

2 82 12,16

UNCLASSIFIED
S6CUWTV CLA4811veCAVCO Or 'roSll mass fu gas

ROI DoCIENTATlaN PAGE 8UPO COMPLZThIORM
. 09PORT NUW16WR ~SCALOG NUIRMEUN

(. ? &?L" ("IaueaeI.) S. TYPE OF NEPO*T a 019oo COvIERED

Investigation of the Ada Language Master's thesis;
Implementation of the Hellenic Comunand June 1982
Control and Information System C 690pol"a *6. 1111PTeNRTM

p. & **T Ro 1 a . COUTWACT am GAVT 104I.ERteI)

Apos tolos Koutsotolis

9. 0smuomIoe OgIn*ZRATIOO WANK AN* A6O6S '. -S

Naval Postgraduate School
Monterey, California 93940

t couMOLLINe o...ca "Ma ADO *Oaes '. R"PO T'

Naval Postgraduate School June 1982
Monterey, California 93940 7. o0 OF s77

In. 01001$resN £gUteC'V 06=9S 6 A WI~u 01091M~ bOWN IS. S- CURITY CLASS, (oe in eder f

Unclassified
Is. O6C~ ASSFICAYIO161/O@WWGUADING

-. -0STMIG TIOll ST'&TU , (o ato maps") Jibi

Approved for public release distribution unlimited.

Dt. OISTYSUT1OWl STATZM"M? (4fe as o* e on ""A N It Et"wmE * Ap

Is. 1UPPaI.tiUa0y MOTES

1-6. X El we*" -fciAnt p an p ide of a w . p - Sliy or week n

Ada Standardization Program Application of Ada
to the Command Control

Co-and Support Concept and Information System
Command Control and Information System

--- >ris thesis examines the features of the Ada language,

describes the structure of the Hellenic Command Control and
Information System (ECCIS) and investigates the use of Ada
for the program development of HCCIS.

The Ada high order programming language system is being
procured to act as a standard for the implementation of

.' "0" 1473 ev o@ v a..o ,e
5/w 6*3-020Us,. to=-o,- n C.LSSIFED

UNCLASS IFIED
[wa. C VO&9,Y &V 'Fula 0.691%6 Sna. OEaefe.

(20. ABSTRACT Continued)

>future United States embedded computer systems. Many
benefits are claimed from this approach for software
engineering and management practice. HCCIS is a future
system which will provide a network of automatic data
processing support at Commands. ~

O...

WOOV.

OD, Ugvg,1473 2T
S/JJ~~~fV 4ft&-flL4-ffO Of* twoA6tI * PAOL*W~ *w

Approved for public release; distribution unlimited.

Investigation of the Ada Language
Implementation of the Hellenic

Comtnand Control and Information System

by

Apostolos Koutsotolis
Comunnder, Hellenic Navy

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL

June 1982

Author:________ ___

Approved by: au___________________
Thesis Advisor

Dean of Information and Policy Sciences

3

ABSTRACT

This thesis examines the features of the Ada language,

describes the structure of the Hellenic Command Control and

Information System (HCCIS) and investigates the use of Ada

for the program development of HCCIS.

The Ada high order programming language system is being

procured to act as a standard for the implementation of

future United States embedded computer systems. Many bene-

fits are claimed from this approach for software engineering

and management practice. HCCIS is a future system which

will provide a network of automatic data processing support

at Commands.

4

(

TABLE OF CONTENTS

I. INTRODUCTION ----

A. PROBLEMS OF SOFTWARE ACQUISITION------------ 9

B. PROJECT MANAGER' S PERSPECTIVE-------------- 10

C. HCCIS AS AN APPLICATION --------------------- 12

II. THE ADA STANDARDIZATION PROGRAM ---------------- 14

A. THE PROGRAM FOR ADA AVAILABILITY ------------ 14

B. A DESCRIPTION OF THE ADA LANGUAGE SYSTEM 16

1. The Program Developed Concept----------- 16

2. The Features and Facilities Provided
by Ada ---------------------- 17

3. The Facilities Provided by the APSE ----- 21

4. Portability Issues ----------------------- 25

5. The Use of Ada and Its Support Tools ---- 27

C. SOFTWARE ENGINEERING IMPLICATIONS ----------- 29

I. Benefits Using Ada--------------------- 29

2. Penalties Using Ada ---------------------- 30

D. ADA'S CONTRIBUTION TO j;3FTWARE QUALITY -$

AND DEVELOPMENT PRODUCTIVITY ---------------- 31

1. Software Quality----------------------- 31

2. The Impact of Ada on Software Quality -- 34

3. Development Productivity--------------- 34

4. Definitions of Software Quality
Attributes ------------------------------ 36

III. THE HELLENIC COMMAND CONTROL AND INFORMATION
SYSTEM (ECCIS) ----------------------------------- 42

A. A DEFINITION OF CCIS ------------------- 42

5- -!.~:T

-' v -- - ----- -- --- .

B. COMMAND SUPPORT CONCEPT --------------------- \43

1. Receipt of Mission ----------------------- 45

2. Commander's Analysis and Mission-------. 45

3. Collection of Information --------------- 45

4. Preparation of Planning Guidance -------- 45

5. Development of Courses of Action -------- 46

6. Development of Staff Estimates ---------- 46

7. Briefing the Commander ------------------ 46

8. Commander's Decision ------------------- 47

9. Preparation of the Concept of Operations -- 47

C. HARDWARE CONFIGURATION ---------------------- 47

1. Microcomputers -------------------------- 48

2. Dynamic Display Terminals and Large
Screen Display -------------------------- 48

3. Printers -------------------------------- 49

4. Communications Control Panel-------------- 49

D. SOFTWARE CONFIGURATION ---------------------- 50

1. Couunications . ..--------------------------- 50

2. Data Distribution ----------------------- 52

3. Messages and Reports -------------------- 55

4. Information Processing Tools ------------ 55

5. Tactical Processing Tools --------------- 56

6. Continuity of Operations --------------- 57

E. PERSONNEL ---------------------------------- 59

F. RELIABILITY, MAINTAINABILITY ---------------- 60

I. Reliability ----------------------------- 60
2. Maintainability ------------------------- 61

6

_ _ '. jj

G. SECURITY 61

1. Physical Protection --------------------- 61

2. Error Detection ------------------------- 62

3. Operational Features -------------------- 62

4. Access Control -------------------------- 62

H. SOFTWARE ENGINEERING REQUIREMENTS ---------- 62

IV. APPLICATION OF ADA/APSE TO THE HCCIS ------------ 64

A. TECHNICAL COMPARISON ------------------------ 64

1. The Programming of Each Computer Type
to be Used ------------------------------ 64

2. Large Programs Development -------------- 65

3. "Off-the-Shelf* Hardware-Independent
Software Packages-------------------- 66

4. High Quality Software ------------------- 66

5. Real-Time Processing -------------------- 68

6. Security of Data ----------------------- 68

7. Concurrent Execution of the Same
Program --------------------------------- 69

8. Structured Programming ----------------- 69

B. ALTERNATIVES TO ADA ------------------------- 70

1. Assembly -------------------------------- 70

2. FORTRAN --------------------------------- 70

3. CMS-2 ---------------------------------- 71

4. JOVIAL J73 ------------------------------ 71

V. CONCLUSIONS ------------------------------------- 73

LIST OF RFlRENCES ------------------------------------ 75

INITIAL DISTRIBUTION LIST ----------------------------- 77

7

_ _ I - -.I

ACKNOWLEDGMENT

I would like to thank Professor Uno Kodres. Without his

patience and guidance this thesis would never have come to

be.

tt

m i~4

I. INTRODUCTION

The objective of this thesis is to examine the Ada pro-

gramning language system and how well it can meet the soft-

ware requirements for the implementation of the Hellenic

Command Control and Information System (HCCIS).

A. PROBLEMS OF SOFTWARE ACQUISITION

The procurement of software for military computer systems

has proved over the years to be a difficult task. Studies

of military computer systems tend to show that not only is

the cost of the software disproportionately high in compari-

son with the other system components, but that the software

also accounts for a significant number of cases of poor

performance or failure of the system at some stage during

its lifecycle.

Also, a military organization probably will experience

several of the following shortcomings in respect to the

computer systems that it procures:

(1) There is cost overrun and lateness of products.

(2) The system is expensive to operate and maintain.

(3) The system is inflexible with respect to enchance-
ments and evolution.

(4) There tends to be a mis-match between the system
functions and the operational requirGents.

(5) There are latent faults in the software.

In addition to their financial implications, such short-

comsings have other serious consequences for the military

9

organization. The mis-match betwee- function and requirement

means that the system cannot do its best and its performance

in reacting to abnormal conditions is poorer than it should

be. The presence of latent faults could mean that the com-

puter system cannot react to a situation at all, or that it

might react incorrectly.

In summary, the operational effectiveness of the entire

military organization is decreased because of computerized

systems.

B. PROJECT MANAGER'S PERSPECTIVE

Software engineering is defined as the science of design,

development, implementation, test, evaluation and maintenance

of computer software over its life cycle. It is the set of

principles and procedures which result in the development of

optimally acceptable software that is reliable and efficient

on real machines.

Recognizing how much software engineering will help him,

a project manager will look for techniques which will achieve

improved performance in the following areas:

(1) Controlability: the chosen technique leads to better
control over the work of the development team.

(2) Productivity: the chosen technique will obtain
improved productivity from the software team, for
example with more automation or re-utilization of
existing software.

(3) Quality: the product will be of good quality and
many serious problems will be avoided after delivery.

Thus it is easier for a project manager choosing the

appropriate techniques to measure the progress of the software

.10

development against well definable criteria and identify the

advantages of this technique over the alternatives.

As one of the larger software procurers, the United

States Department of Defense (US DoD) certainly experiences

and appreciates the problems of software acquisition. In

the mid-1970s, its expenditure in software was over three

billion dollars annually, of which over 50% was spent in

software for embedded computer systems (those applications in

which the computer is integrated into an electronic or

electro-mechanical system, e.g., a weapon system, from a

design, procurement and operational viewpoint).

The DoD deemed that the cost effectiveness was poor, so

it initiated a research and development program in order to

improve the future procurement and life cycle cost perform-

ances. This program led to the decision for standardization

on a single prograuning language for use in embedded systems

with full support facilities for software development. The

DoD soon established that no existing language system was

suitable for standardization and therefore made the decision

to procure a new package.

This effort has yielded the high order programning

language Ada, the design of which was completed in 1980.

The effort is now continuing with the final definition and

development of the support facilities, the Ada Programming

Support Environment (APSE) from which initial experimental
ccomponents are now becoming available. The international

11

computing community is actively participating and monitoring

the developments related to the Ada language and its support

environment.

C. HCCIS AS AN APPLICATION

Hellenic forces as a software procurer, are interested

in development the Hellenic Command Control and Information

System (HCCIS). This is intended to provide computer assisted

support to the command and control processes within several

Commands. HCCIS supports all missions which may be assigned

to Hellenic Forces under all operating conditions that could

conceivably be encountered in any part of the Hellenic area.

Using modular equipment, HCCIS has the flexibility to be

configured to support any task organization regardless of

size and composition. The system operates to support train-

ing exercises, operational planning and execution of combat

operations. HCCIS supports Commanders and their staffs in

carrying out functions in the areas of operations and intelli-

gence, including planning, intelligence production, and the

monitoring and directing of tactical operations. The system

provides this support to ground elements, sea elements, air

elements and headquarters.

The software engineering, software management and time-

frame give Ada and APSE a clear potential relevance to the

HCCIS implementation. It is the principal objective of this

thesis to specify that relevance. This is achieved by first

making a technical appraisal of both the Ada and HCCIS

4.2

programs, and then examining the requirements of HCCIS for

compatibility with the facilities offered by Ada and APSE.

Chapter II is devoted to describing the major features

and facilities of the Ada language and its support environ-

ment. In Chapter III the characteristics and requirements

of the Hellenic Command Control and Information System for

software support are examined and evaluated. Chapter IV

compares the two programs for compatibility. Chapter V

summarizes and concludes whether or not the Ada language can

be used as the HCCIS programming language.

fi

zJ

13

iiMo

II. THE ADA STANDARDIZATION PROGRAM

In this chapter the goals of the United States Department

of Defense's (US DoD's) Ada program are summarized, the devel-

opment stages up to the present day are described, and

future planning examined. From this, an estimation is made

when the various products might become available. There-

after, these products are examined and their value to soft-

ware engineering and software management described to indi-

cate their importance.

A. THE PROGRAM FOR ADA AVAILABILITY

The overall scope and aims of the program to develop a

new programming language (Ada) can be stated as:

(1) To define the requirements and the design specifi-
cations of a high order language for the complete
programming of dedicated military systems software.

(2) To define the requirements and the specifications of
a program development support environment for Ada
applications (i.e., the Ada Programming Support
Environment (APSE)).

(3) To ensure widespread acceptance of Ada and APSE and
their use by the military services.

(4) To procure the APSE in a form which enables easy
portability across computer types.

(5) To establish means of controlling changes to the
Ada standard (i.e., through the Ada Language Control
Board (ALCB)).

(6) To provide a means for the validation of a now Ada
compiler.

(7) To provide instructional and training materials for
Ada and APSE.

14

In July 1980, the design specification of the Ada language

was finalized. To reach this point the specification went

through several refining iterations. The requirements were

defined in five stages of development, sumnarized in the

Steelman document used to evolve the design.

The Ada language refe,-ence manual, published in 1980,

represents the language specification, and the DoD has already

initiated the procurement of tools for the Ada Compiler Vali-

dation Capability (ACVC) which consists of tests, tools,

procedures, and documentation design to enforce and encourage

development of compilers that conform to the Ada language

standard.

The APSE specification is currently being evolved. A

requirements document named Stoneman, published in 1980,

specifies the structure and content of an APSE to support the

development and maintenance phases of a system. As a result

of its policy of encouraging international participation in

all phases of the Ada program, there are implementations of

APSE-like systems (including compilers) being sponsored by

other country's computing communities. Also, many universi-

ties and private enterprises in the United States and Europe

are developing compilers. The DoD has stated its intention

zto make Ada the only language authorized for their embedded

systems from about 1990 onwards.

Experience gained from previous language standards shows

that it takes about a decade for a language to achieve wide-

spread use, and there is no indication to date that Ada

15

!M

will achieve widespread use faster than any other high order

language. By monitoring the progress of the whole inter-

national Ada program, we can attempt to predict the follow-

ing future events:

(1) Initial Ada compilers will be available from univer-
sity, commercial and government sources starting
from early 1983.

(2) The Ada Compiler Validation Capability will be
operational in 1983.

(3) Experimental systems containing the essential basic
facilities, called the Minimal Ada Programming Support
Environment (MAPSE), will be available by 1984.

(4) It can be expected that packages will become avail-
able to support particular application areas, such
as database management, network handling etc., from
about 1984 onwards, as has been scheduled by the
Computer Corporation of America.

B. A DESCRIPTION OF THE ADA LANGUAGE SYSTEM

Paragraphs 1 to 5 combine to form a description of the

features and facilities of the Ada language and its support

system and how they might be used.

1. The Program Development Concept

Ada promotes the host/target concept of program

development in which the Ada Programming Support Environment

operates on a large scale computer system, the host. Ada

program are prepared, compiled, linked, tested (as far as

possible) and maintained on the host. The target computer

(the hardware on which the application will eventually run)

need only be involved in the final stages of program and

interface testing. For some projects, the target computer

16

- . - -- - - -- - -.- 7-

might be of the same type as the host. This would be an

advantage, but in most cases, the operational environment

would be different from the program development environment

(APSE).

2. The Features and Facilities Provided by Ada

The Ada language has been designed to provide all

the features needed for complete real-time systems programming

of the target computer. Therefore Ada programs do not need

to rely on the target computer having additional software

packages. In order to support this, the language features

include:

a. Modern high level language for sequential coding

of program modules, which includes the following features:

(1) The syntax encourages a descriptive-English
style of text.

(2) Subtypes. A type characterizes a set of
values that objects of the type may assume
and a set of operations which can be
applied to those values. It is possible to
restrict the set of allowed values of a
type without changing the set of applicable
operations. Such a restriction is called
a constraint and the subset of values it
defines is called a subtype. Subtype is a
subset of elements of a given type. Since
subtype declarations do not introduce new
types, objects of different subtypes of the
same type are compatible for assignment.
Subtypes are characterized by constraints
which include range, precision, scale, index
ranges, and user defined constraints.

(3) Encapsulation (data abstraction) provides a .4
means for limiting the accessibility of data
items within a program. In the model where
entities are either public (if declared in
the visible part) or totally hidden (if
declared in the module body), encapsulation

17

is referred to data types which correspond
to a situation in which we want the name of
a type to be public, but where the knowledge
of its internal properties is to be avail-
able only to the module body. This encapsu-
lation is achieved by declaring the type
name within the visible part, but at the
same time specifying the type to be private.

(4) Complete control structure mechanisms
(conditional statements, loops) are provided.

(5) Procedures and functions are also provided.

b. Parallel tasking and inter-task communications, a

large and complex area which organizes, through language con-

structs, the scheduling and the executive and communication

features for controlling the run-time system. A task is a

textually distinct program unit which may be executed con-

currently with other tasks. It is similar in form to a pack-

age module. The major difference between a package module

and a task module is that the package is merely a passive

construct while a task is active. A task may be declared

within any declarative part (except the visible part of another

task) and similarly contains two distinct pieces of text.

These are the specification part which describes its external

appearance and the module body which describes its internal

behavior.

c. Input/output, with high level facilities pro-

viding means for convenient transport of character and numeric
data, and with low level facilities, especially in embedded

computer systems, providing direct signal processing andi

interaction with non-standard peripheral devices.

18

d. Exception handling, which provides the mechanisms

for the handling of unexpected program conditions, faults

etc., and gives the capability for recovery. The ability to

handle error situations is essential for reliability of

real time systems. Exceptions provide a way to abnormally

terminate a program unit. They ace declared by an exception

declaration of the form "NAME: exeption". They are invoked

by raising the exception by means of a statement "raise NAME"

which is similar to a goto statement in that it transfers

control out of the environment of invocation without any

possibility of return. The action to which an exception

gives rise is specified by an exception handler. The excep-

tion handler invoked by a raised exception is determined

dynamically by propagating the exception backwards through the

chain of calls until an exception handler which handles the

raised exception is found. The exception handler serves as

a terminator of the program unit in which it occurs, return-

ing control to its caller on completion.

e. Generic definitions, which provide the ability to

parameterize program units with the appropriate data types.

Generic clauses provide a facility for translation time

parameterization of proqram units. The primary purpose of

this generic facility is factorization, so as to bring about

a reduction in the size of the program text, while simul-

taneously improving both readability and efficiency. A

generic instantiation creates an actual instance of the

19

specified program unit by replacement of the generic param-

eters. Such an instantiation must appear in a declaration

which gives the name of the particular instantiation. For

example the generic package PERSON, defines a template from

which the instance JOHN can be created by the generic

instantiation "package JOHN is new PERSON".

f. Declaration of target computer dependencies, which

gives practicality to the language by enabling applications

to map into particular hardware configurations.

g. Separate compilation (a program unit that is

being compiled is able to get information from previous

separately compiled units) and library facilities. The Ada

library and subsequent language support programs provide the

means for constructing executable Ada programs. The facili-

ties provided may include:

(1) The Ada library, unique to each target
computer supported, including:

(a) The standard environment for the Ada
language.

(b) The run-time system supporting the
parallel processing and standard
peripheral drivers.

(c) The packages for input/output.

(2) Backing store overlays for code units
(useful when target computers have no
virtual memory hardware).

(3) Interfacing to routines of other language
systems.

(4) Interfacing to other Ada packages (e.g.,
database management system).

20

-=NN

From this list of features it can be appreciated

that Ada is a large language, but this is due to its wide

scope rather than a redundancy of ideas. It is the first

language which includes all these features integrated into

its design.

3. The Facilities Provided by the APSE

To fully realize the benefits of language commonality,

a common programming environment is also required. This

permits programmers to move from one host system to another,

continuing to employ the same development tools and user

interface. Concurrently with the Ada language design, the

DoD conducted a program to determine the requirements for an

integrated Ada environment, resulting in the Stoneman environ-

ment specification.

The APSE is to offer a well coordinate set of tools to

support a programming project throughout its life cycle

activity. It must be highly portable and employ conventions

for interface between user and tool. Stoneman introduces the

notion of a common open-ended database to serve as the inter-

face through which a set of software tools can communicate.

For reasons of portability, Stoneman recognized three

distinct levels within the environment: the Kernel Ada Pro-

gramming Support Environment (MAPSE), the Minimal APSE

(MAPSE), and the APSE.

The KAPSE, is designed to provide a machine independent

interface to other APSE tools. All APSE tools using a common

21

--... .- iw- iow -

KAPSE should prove portable for the set of environments

supported by the KAPSE.

Stoneman defines also a minimum set of functions which

an APSE must perform. This Minimal APSE (MAPSE) must provide

a method to create database objects, modify database objects,

transform an object from one representation to another,

support the display objects, parse, link, load, and execute.

An APSE is a full environment based upon a particular

MAPSE. However, it can incorporate additional tools of

general interest, of interest only within a particular pro-

ject, or of interest only to an individual programmer. In

the case where no tools have been added, a MAPSE is itself

an APSE. The APSE provides comprehensive, self-contained

facilities for Ada program development and facilities that

support the software management function.

a. Principal Characteristics of APSE

The principal characteristics and facilities

expected to be offered to the user can be summarized as

follows:

(1) APSE runs on a powerful, large capacity
host computer system.

(2) APSE provides its users with a self-
contained Ada oriented environment which
operates under an existing host operating
system. Once the user is in the APSE
environment, the host system becomes
invisible.

(3) APSE provides time sharing facilities to
on-line terminal users as well as remote
entry to batch job running.

22

.-
S ~ -- -

(4) A powerful command language is provided to
the user for communication with the APSE.

(5) Database facilities are provided for the
storage of any category of information.
Information belonging exclusively to
different projects can be kept apart.

(6) Configuration control can be applied to
categories of stored information (i.e.,
proper configuration control can automate
several of the most time consuming and
error prone activities of the operation
and maintenance phase).

(7) The Ada compiler front-end provides separate
compilation of source modules into the
standard intermediate code form. The asso-
ciated Ada program library function organizes
access and storage of Ada modules in source
or intermediate form and controls version
consistency.

b. Facilities for Target System

For each target system supported, the following

facilities are provided:

(1) Target run-time system library (as Para.
B.2.g.(l)).

(2) Target code generation from the intermediate
representation and code optimization.

(3) Link editing of the separately compiled
modules into a single load unit, identify-
ing backing-store overlays.

(4) Loading of programs for execution.

(5) Facilities for setting a loaded program
into execution and interacting with it,
via the connected peripherals.

(6) An on-line debugging tool, wheraby the
executing program can be inspected and
its operation controlled.

(7) Debugging tool for symbolic execution,
whereby the execution sequence and error
state of a program may be related back to
the Ada source text.

23

The facilities described up to this point are

deemed to be the essential minimum for adequate software

project support and therefore are called the Minimal Ada

Programming Support Environment (MAPSE).

c. Additional Tools and Facilities for APSE

APSE, as mentioned above, is designed to be open-

ended, so that tools and facilities can be added without

difficulty. As more projects make use of APSE it is antici-

pated that tools will be developed to meet general require-

ments, as well as requirements more oriented to specific

needs. Then, these would be made available to all APSE users.

The kind of tools and facilities which might be expected in

a mature APSE are:

(1) Validation aids.

(2) Branch testers.

(3) Fault analysis aids.

(4) Software development systems, in which all
project information is held and its
progress reported.

(5) Requirement specification language system.

(6) Document word-processing, with facilities to
aid the documentation of Ada word-processing,
facilities to aid the documentation of Ada
programs, and military documentation
structures.

(7) Emulators for target computers. These are
valuable tools for testing, because they
can be used in addition to or instead of
the actual target.

24

4. Portability Issues

Portability is a fundamental design criterion for

Ada and APSE. It is the intention to make Ada and APSE

transportable among a wide variety of large development

systems so that development personnel do not need to be re-

trained whenever systems are changed.

a. Ada Target Program Portability

The Ada language and its defined library pack-

ages provide all the major constructs necessary for struc-

turing a real-time system program as a self-contained unit

for execution on a target machine. Thus the program need

not be reconstructed to move it from one target of conven-

tional architecture to another, although local optimization

might be desirable. This is the so-called retargetability,

which refers to making the environment support a new target

machine. It is important that the full language be properly

supported for the new target.

Ada also relieves many of the traditional target

to target incompatibility problems. Most of them are re-

lieved by Ada's provision of libary packages which support

machine dependent physical interfaces, interrupt structures

or special devices.

Thus, programs and libraries written in Ada should

have better portability than other higher level languages.

b. The APSE Portability A

Maximum portability is achieved by structuring

the APSE into the Kernel APSE and the APSE toolset. The

25

KAPSE is largely invisible to the user. Its function is to

provide a machine independent environment for the loading

and execution of Ada programs on a host computer. The features

that it provides are:

(1) The interfacing functions with the host
system, which may be a computer plus
operating system or a bare machine without
other software support.

(2) A host independent multi-programming
environment for Ada program development,
loading and execution. The interface takes
the form of a library of Ada package speci-
fications and enables flexible, open-ended
addition of new APSE tools.

(3) Access control to APSE toolset is built-in.

The APSE toolset is a collection of programs that

are written completely in Ada and make use of the above men-

tioned KAPSE interface. Therefore all these tools 4 4 aost

independent and fully portable. However, several tools are

target dependent, for example, the code generator, parts of

the linker, the loader, and the debugger. These must be

re-written to support a new target. We can note however

that the front-end of the Ada compiler is designed to gener-

ate intermediate code which is independent of target computer.

As all components will be written in Ada, prota-

bility will be greatly simplified.

c. Portability of the APSE Database

Information held in the APSE database may need

to be transported from one host to another. A change of

host is often forced when a system moves from its develop-

aunt phase to its operational phase.

26

Two methods are possible for transportation of

information: a data link connection between hosts or by

intermediate dumping of the data on magnetic media. In

addition, an APSE program is required to provide the neces-

sary conversion between the APSE database and input/output.

This kind of portability is a nontrivial problem.

Even when the original host and the new host have compatible

basic environments that allow tools and database objects to

be transported, there can be problems in determining pre-

cisely what should be moved to the new host. There are dangers

in moving too little information to the new host, but it is

also undesirable to move too much information.

d. Portability of Trained Personnel

Programmer portability refers to the ability of

programmers to move from one project to another without

extensive training.

The US DoD's goal is to standardize the Ada

language, admitting no subsets or dialects, and to standard-

ize the majority of the APSE user interface. Therefore,

programmers and other APSE users should have no difficulty

using another APSE system.

5. The Use of Ada and Its Support Tools

In the design of the Ada language and of the APSE

facilities are contained state of the art ideas for real-time

software design and construction. The early notion of build- 4
ing real-time software as a sequence of actions initiated

regularly by external events has given way to structuring for

27

maximum asynchronous parallelism decoupled as far as possible

from rigid external timing.

Ada extends the constructs for parallelism by adding

completeness in the areas of time outs, multi-choice events,

and fault handling. All this means that to get the most out

of software written in Ada, advantage must be taken of the

language constructs and traditional real-time systems design

must be re-thought.

The APSE also opens more rewarding techniques for

software development. For example, when development in a

host environment is stressed it is natural to put more empha-

sis on testing with a simulated environment. A simulated

environment can be employed profitably by doing software

prototyping at an early stage in the requirements analysis

or system design, using the highly productive Ada/APSE products.

There are several ways in which the APSE components

could be used:

a. The full APSE running on a large main-frame host
computer in a time-sharing mode. Representative
target computers are connected for check-out
purposes. This represents the ideal usage lead-
ing to maximum life cycle cost savings.

b. The full APSE, with other language systems inte-
grated into and making use of the APSE facili-
ties. Integration would be a significant
redevelopment for the other language systems.

c. Some of the APSE components are incorporated
into the existing operating systems environment.
For example, editors, compilers, loaders and
debuggers can be run within the existing system's
framework. However, many benefits would be
lost.

28

C. SOFTWARE ENGINEERING IMPLICATIONS

The goal intended for the Ada program by the US DoD is

primarily the reduction of its own expenditure on military

software. This is computed across the complete life cycle

of all software projects and although it may be estimated

now, it may take over a decade or more before the projections

can be confirmed. At the same time, it is hoped that the

quality of the software products will improve, especially in

the areas of reliability and ease of maintenance.

The mechanism for achieving this software improvement is

the eventual acceptance of a single high order language, Ada,

for writing defense system software and the use of a single

standard support environment for the language, the APSE.

1. Benefits Using Ada

The claims which are listed below for Ada, indicate

the valid benefits and how Ada's use would achieve life cycle

cost savings.

a. The development of the Ada language and the
procurement of the APSE components is a once
only expenditure. This includes any necessary
development iterations to the components and
enhancements to provide availability on different
hosts and targets. For full benefits all projects
must use the standards.

b. All projects have access to full software develop-
ment and software management tools in an environ-
ment which is conducive to productive programming.

c. APSE is designed to allow different projects,
which may be in different phases of their life
cycles, to share its facilities.

d. APSE can be implemented to coexist with other
host computer environments. Thus the host
computer might be used more cost effectively.

29

e. The standardization avoids excessive dependence
of the procurement authority on particular
hardware manufacturers and software suppliers.

f. The standardization of ADA and APSE encourages
mobility of trained staff and interchange of
expertise. This is particularly important in
a defense context, as military personnel are
often posted for relatively short periods.

g. Ada and APSE assist in the production of higher
quality software and higher development produc-
tivity. A high quality product is essential in
the military context. It may be the difference
between surviving and not surviving.

2. Penalties Using Ada

Many objections have been raised against Ada and

against language standardization as a principle. The follow-

ing is a list .of potential penalties.

a. Standardization might restrict the use or even
development of future advances in: software
technology.

b. Ada is a large and complex language. As a result:

(1) The likelihood of making syntax errors is
increased, since human information processing
capabilities are limited.

(2) Standardization efforts are not simple. The
smaller the language the more likely the
success of promoting a standard version.
Already several subsets of Ada are commer-
cially available.

(3) Teaching is difficult. The successful
teaching of a new language to potential
users is vital for its acceptance. Training
time will be increased in comparison to
other languages.

(4) It is so large that it is difficult to use.
Even on large mainframe computers the re-
sources required for compiling Ada code are
substantial.

c. If standardization is not achieved, the Ada effort
only increases the number of languages in use.

30 - - - .- ---

It is considered that the potential penalties

are small in comparison to the potential benefits. However,

time is required to develop mature software products. As

with any new item of software, faults, inadequacies etc.,

must be expected.

D. ADA'S CONTRIBUTION TO SOFTWARE QUALITY AND DEVELOPMENT

PRODUCTIVITY

The promotion of higher software quality and higher

development productivity was an implicit design goal of Ada

and APSE. The Ada language has been derived in accordance

with the US DoD's technical requirements of the Steelman

document. Steelman requires the language to satisfy the

needs of embedded computer applications. It should be

implementable, machine independent, and should avoid unneces-

sary complexity. It should promote the production of relia-

ble, maintainable, and efficient programs.

The Stoneman requirements for the support environment

repeat similar criteria for the APSE toolset and additionally

emphasize the need of portability. An overall appraisal of

how successfully Ada and APSE will meet these goals is

accomplished as follows.

1. Software Quality

As an aid to assessing the overall quality of a soft-

ware product, the notion of quality can be broken into quality

attributes. These attributes are defined in Section 4 and

they are:

31

Accessibility

Accountability

Accuracy

Augmentability

Communicativeness

Completeness

Conciseness

Consistency

Correctness

Device efficiency

Device independence

Efficiency

Human engineering

Maintainability

Modifiability

Portability

Reliability

Reusability

Sel f-containedness

Self-descriptiveness

Structuredness

Testability

Understandability

Usability I
At its higher level the quality or general utility of

a software package can be divided into three areas:

32

I, , .d.. m im lm Ii

Usability: How well (easily, reliably, efficiently)
it can be used.

Maintainability: How easy it will be to maintain
(understand, modify, retest).

Portability: Will it still be usable if the environment
is changed?

However these three high level quality attributes

can be broken into more basic components. For example,

maintainability is a high level attribute which includes the

lower level attributes of modifiability, understandability,

and testability. In this tree-like structure, if a program

is maintainable it must necessarily be understandable, testable,

and modifiable. This structure extends to another level of

more primitive concepts, thus, if a program is understandable

it is also necessarily structured, consistent, concise, and

self-descriptive.

Considering the trade-offs of the quality attributes

we can say that some are in conflict with the others. There-

fore, the applied technology is making a compromise. The

A most serious compromise when using a high order language such

as Ada usually concerns efficiency:

a. The use of a modular structured HOL enhances
understandability, testability, modifiability,
and portability at the expense of efficiency.

b. The use of highly accurate numerical algorithms
or floating point instead of integer arithmetic,
can enhance reliability at the expense of
efficiency.

c. The use of robustness features such as extensive
error checking enhances reliability and human
engineering at the expense of efficiency.

33

d. The use of communicativeness features such as
detailed error messages, enhances testability
and human engineering at the expense of efficiency.

2. The Impact of Ada on Software Quality

This section is addressed in Figure 1 where Ada's

technical features (Para. B.2) are cross-referenced against

the low level quality attributes. From this an assessment is

made whether the feature promotes or hinders the attribute,

e.g., use of the subtype constraints language feature promotes

correctness in comparison with a technology without such a

feature.

Overall, the picture indicates that the attributes

portability, reliability, and maintainability are promoted.

3. Development Productivity

The use of Ada and APSE will have potential benefits

in the following development activities:

a. Programming

It has been demonstrated that programmer produc-

tivity can be improved clearly through the use of a good high

order language with good support facilities. Using Ada,

better software will be produced more quickly, principally

because of the increased human engineering.

b, Error Detection and Testing

The presence of high order constructs and data

type compatibility checking means that the compiler can trap

a large proportion of errors before any code is generated.

The exception feature is available to handle unexpected

34

!1 _ _ L _ II Pop^I

s cl a I 1~/ 4 " lrw OL +
l,, 4 -1~ n Q / 4v ?4 # 4 - - 4 .A L ir 0 6 I

-- ans~-A. -4 Ow' _3

5 7dA - Me. Qb- 06 6.-f- d-- L9-j-~

0 7d
a~

IL -4
35

errors and modularity and structuring provided by the

language are aids to efficient testing. Thus Ada and APSE

promote earlier detection of programming errors via the

compiler and test toolset.

c. Maintenance and Enhancement

These activities will be more efficient because

of the improved design visibility and understandability of

software. Maintenance for the correction of programming

errors will be reduced because of the higher software quality

and earlier error detection provided by Ada. An improvement

in this area is of extreme importance because maintenance

traditionally consumes a high proportion of the total life

cycle expenditure.

d. Training

Ada standardization promises the possibility of

transferring software and personnel between projects without

large overheads.

4. Definitions of Software Quality Attributes

Accessibility

The code has the characteristic that it facilitates

selective use of its parts (e.g., variable dimensioned

arrays). Accessibility is necessary for efficiency, testa-

bility, and human engineering.

Accountability

The code has the characteristic that its usage can

be measured. This means that critical segments of code can

36

be implemented with examinations to measure timing, whether

specific branches are exercised, etc. Code used for examina-

tions is preferably invoked by conditional inclusion tech-

niques to eliminate the additional instruction words or

added execution times when the measurements are not needed.

Accuracy

The code has the characteristic that its outputs are

sufficiently precise to satisfy their intended use. This is

a necessary attribute for reliability.

Augmentability

The code has the characteristic that it can easily

accommodate expansion in component computational functions

or data storage requirements. This is a necessary attribute

for modifiability.

Communicativeness

The code has the characteristic that it facilitates

the specification of inputs and provides outputs whose form

and content are easy to understand and are useful. Communi-

cativeness is necessary for testability and human engineering.

Completeness

The code has the characteristics that all its parts

are present and each part is fully developed.

Conciseness

The code has the characteristic that excessive

information is not present. This implies that programs

are not excessively fragmented into modules, overlays,

37

functions and subroutines, nor that the same sequence of code

is repeated in numerous places, rather than defining a

subroutine or macro.

Consistency

(a) Internal consistency: The code has the charac-

teristic that it contains uniform notation, and terminology

within itself. Internal consistency implies that coding

standards are homogeneously adhered to; e.g., comments

should not be unnecessarily extensive at one place, and

insufficiently informative at another.

(b) External consistency: The code has the charac-

teristic that the content is traceable to the requirements.

External consistency implies that there is a one to one

relationship between functional flowchart entities and coded

routines or modules.

Correctness

The code has the characteristic that there is agree-

ment between the programs total response and the stated

response in the functional requirements.

Device efficiency

The code has the characteristic that the operations,

functions, or instructions provided by the code are per-

formed without waste of resources with respect to the device.

A program may be device efficient with respect to one device

but not another, implying that it is not efficient with respect

to the overall set of resources it employs.

38

- !-

Device independence

The code has the characteristic that it can be

executed on computer hardware configurations other than its

current one. This attribute is necessary for portability.

Efficiency

The code has the characteristic that it fulfills its

purpose without waste of resources. This implies that

choices of source code constructions are made in order to

produce the minimum number of words of object code, or where

alternate algorithms are available those taking the least

time are chosen etc.

Human engineering

The code has the characteristic that it fulfills its

purpose without wasting the users' time and energy. This

attribute implies accessibility, robustness, and communica-

tiveness.

Maintainability

The code has the characteristic that it facilitates

updating to satisfy new requirements or to correct deficien-

cies. This implies that the code is understandable, testa-

ble, and modifiable.

Modifiability

The code has the characteristic that it facilitates

the incorporation of changes once the nature of the desired

change has been determined.

39

Portability

The code has the characteristic that it can be trans-

ferred to and operated easily and well on computer configura-

tions other than its current one.

Reliability

The code has the characteristic that it can be ex-

pected to perform its intended functions satisfactorily.

This implies that the program will compile, load, and exe-

cute, producing answers of the requisite accuracy. It also

implies that it is complete and externally consistent.

Reusability

The code has the characteristic that it can continue

to perform despite some violation of the assumptions in

its specification. This implies, for example, that the

program will properly handle inputs out of range.

Sel f-containedness

The code has the characteristic that it performs all

its explicit and implicit functions within itself. Examples

of implicit functions are initialization, input checking,

diagnostics, etc.

Self-descriptiveness

The code has the characteristic that it contains

enough information for a reader to determine or verify its

objectives, assumptions, constraints, inputs/outputs, com-

ponents. Self-descriptiveness is necessary for both

testability and understandability.

40

S tructuredness

The code has the characteristic that it possesses a

definite pattern of organization of its interdependent parts.

This implies that evolution of the program design has pro-

ceeded in an orderly and systematic manner, and that standard

control structures have been followed in coding the program.

Testability

The code has the characteristic that it facilitates

the establishment of verification criteria and supports

evaluation of its performance. This implies that requirements

are matched to specific modules or diagnostic capabilities

are provided, etc.

Understandability

The code has the characteristic that its purpose is

clear to the reader. This implies that variable names or

symbols are used consistently, modules of code are self-

descriptive, and the control structure is simple or in

accordance with a prescribed standard.

Usability

The code has the characteristic that it is reliable,

efficient, and human engineering has been applied. This

implies that the function performed fulfills the require-

ments and the program is robust against human errors.

41- -- - p miiun-

III. THE HELLENIC COMMAND CONTROL AND INFORMATION SYSTEM (HCCIS)

The purpose of this chapter is to provide an overview

of the characteristics and requirements for HCCIS.

A. DEFINITION OF HCCIS

In peace time the General Staff's main function is to

prepare and coordinate defense plans for all the Hellenic

area. In war time it controls all the operations at land,

sea, and air of this area.

The Hellenic Command Control and Information System

(HCCIS) is a future software system which is of interest to

Hellenic Forces and is intended to provide computer support

to the command and control processes between several Com-

mands. It uses automatic data processing equipment to col-

lect, process, display and distribute the necessary

information.

This system consists of personnel, procedures, facilities

and equipment used to provide information and is composed of

both automated and manual information systems. The system

provides the capability to plan, direct, and control the

forces during periods of peace and war. HCCIS supports all

missions that are assigned to Hellenic Forces under all

operating conditions. Designed to be modular equipment,

the system has the flexibility to support combat operations

regardless of the size and composition of the combat units.

42

1F

HCCIS supports units in all operating environments including

training exercises.

The full operational capability for the HCCIS is not

expected before the mid-1990's. With potential software

implementation on such a large scale project and with a

production time-frame from 1988 through 1995, the Ada language

system is clearly of relevance. Therefore we can establish

the likely software engineering requirements of HCCIS and

examine whether Ada/APSE features can meet these recuirements.

B. COMMAND SUPPORT CONCEPT

This concept emphasizes individual performance at the

Command level. Every Command would be equipped with a sub-

system which supports the operational requirements of the

Command.

Within each subsystem, the components of the subsystem

would be based on automatic data processing functions to

simplify design and maximize performance. These components

would be interconnected using a high speed local area

network.

The network configuration provides standard interfaces

applicable for connecting automatic data processing elements.

It also provides network access and network control. The

network control is distributed among all the equipments con-

nected to the network. It consists of monitoring the ex-

change of data that takes place between the ADP elements and

also in managing the dynamic allocation and reallocation of

43

system resources. The network is an open system architec-

ture. The automatic data processing resources at each Com-

mand are allowed to grow by the addition of new hardware

modules as necessary. Major attributes of the network are:

Flexible topology to interconnect the automatic data
processing resources for each of adding or removing
equipment.

High reliability achieved with equipment replication.

All the Commands would be connected into the HCCIS data

transfer service system. System management and control might

be by HCCIS. However each Command manages and operates the

equipment within its own facilities. The HCCIS system has an

integrated data base for all appropriate operational require-

ment areas, and each Command makes use of this data base.

Also each Command uses the standard data base management sys-

tem which provides effective exchange of information between

Commands and satisfies interoperability requirements. HCCIS

provides the Commands with reports from land, sea, and air

elements in contact with the enemy and serves as a channel

for intelligence requests from these units. It incorporates

automation aids to facilitate the information processing tasks.

Specifically, it provides tools to simplify the following

tasks:

Entry and storage of information.

Management, retrieval, and display of text and graphics.

Generation, analysis, and modification of plans.

Printing and dissemination of plans, orders and reports.

44----------------- - v-- *

These tasks support the following major activities of

each Command.

1. Receipt of Mission

The arrival of the initiating directive starts the

preliminary planning process. The initiating directive for

the assigned mission is entered into the HCCIS data base

automatically or manually, depending on which form the

message is received.

2. Commander's Analysis and Mission

The Commander's analysis of the initiating directive

and the assigned mission is aided by the information made

available to him by the information retrieval capabilities

of HCCIS. Retrieval of previously stored information and

intelligence allows the Commander to update his knowledge

about the objective area.

3. Collection of Information

HCCIS provides the capability so that each planner

has the best information available throughout the planning

phase of the operation. Query messages can be generated

and dispatched to obtain required information. The system

aids message development by presenting the appropriate menu

and by interacting with the operator.

4. Preparation of Planning Guidance

By considering what information is available, the

Comiander can enter his initial planning guidance into the

data base and distribute it, using HCCIS. As more information

45

becomes available, the Commander's guidance can be easily

modified with HCCIS text and graphic processing.

5. Development of Courses of Actions

In the development, analysis, and comparison of

alternate courses of action, the planning staff will use the

information management capabilities of HCCIS to ease the

planning effort.

6. Development of Staff Estimates

The staff planners use the HCCIS information proces-

sing aids to enter, store, modify and disseminate the text

and graphics involved to include the following:

Information processing.

Inter-system query.

Word processing.

Message generation.

Algorithmic calculations.

The staff prepares and enters into HCCIS a graphic

presentation, supported by text, of the enemy's probable

reaction to each course of action. These graphic and text

depictions are stored into the data base for use during the

combat and in briefing the Commander.

7. Briefing the Commander

The information presentation capabilities of HCCIS

help the Commander to conceptualize the situation and weigh

the relative merits of each course of action.

46

~u im 2 1 "

8. Commander's Decision

The Commander's ability to review, modify, and reevalu-

ate the staff's information and recomendations aids in his

decision process.

9. Preparation of the Concept of Operations

Once the Commander's decision has been made, the staff

may finalize the selected course of action and the approved

version of the concept of operations is automatically trans-

mitted to other Commands served by HCCIS. Once the concept

of operations is issued, the system provides automated

assistance during the conduct of detailed planning.

C. HARDWARE CONFIGURATION

The structuring of each automatic data processing center

in HCCIS can be seen as a cluster of hardware equipments

such as computers and peripherals (discs, tapes, printers).

Although, within the HCCIS the different processing functions

can be supported by dedicated processors of different types,

the system calls for commonality of equipment to such extent

as it is operationally and technically feasible.

Users and operators use the automatic data processing

system through work stations. Each work station consists

of consoles configured from specific hardware elements such

as interactive text display, interactive graphic display,

monitor display, text printer and graphic printer. At the

display station, which is the central part of each work

station, an operator interacts with the system, reviews the

47

.. now

tactical situation, obtains real-time data, makes and imple-

ments decisions and receives and originates digital messages.

The major equipment items which are appropriate to satisfy

the HCCIS system requirements are the microcomputer, the

dynamic display terminal, the large screen display, the

printer, and the comunication control panel.

1. Microcomputers

Microcomputers are used in all HCCIS centers to

perform functions such as:

a. Execute HCCIS application programs.

b. Contain and maintain the database.

c. Drive peripherals such as printers.

d. Perform computations.

e. Route messages.

f. Support on-line maintenance.

g. Provide digital communications access processing.

Each microcomputer can be programmed to perform a

specific set of functions using prepared programs that are

loaded into the machine.

2. Dynamic Display Terminals and Large Screen Display

On the display screen the operator is able to have

both graphic and text display simultaneously. The selection

of a display element, either graphic display or text display,

by the operator initializes a search of the data base to

retrieve all display elements of the type selected within

the geographical area or whatever is being displayed on the

48

terminal. Once these elements are displayed, the operator

may selectively erase portions of the display not required.

Since the desired collection of elements is being displayed,

the operator may assign an identifying name to the display.

This name may then be used to regenerate the display by a

single operator action at a later time, and the regenerated

display shows current data. Graphic situation displays de-

pict friendly and enemy support information and control

measures in any combination desired on a real time basis.

High level Command functions such as the maintenance

of situation assessment are supported on a large screen dis-

play.

3. Printers

Two types of printers are used in HCCIS centers:

the small printer, and the large printer capable of printing

text and graphic hard copy output.

4. Communications Control Panel

The comunications control panel is used by the opera-

tor to interface with the voice co-munications network. The

network consists of radios, switched voice circuits, and

dedicated voice circuits. The panel is capable of monitor-

ing access to any one or cowbination of radio nets and

switched or dedicated voice circuits, and transmission access

to any net or any cobination of switched or dedicated voice

circuits. 4

in a4dit.- Commands may have dedicated hardware

support to guarantee availability and responsiveness for

49

Ifor

|- |

time-critical applications. All essential hardware equipment

is duplicated. The overall automatic data processing system

configuration is controlled locally by an operational

management processor.

D. SOFTWARE CONFIGURATION

System software is required for the application, data

base, man/machine interface, conunications, continuity of

operations, security, interface unit and other functions.

System software for process monitoring, buffer management,

and database management is standardized to the maximum possi-

ble extent. Each of the processors connected to the network

has system software to manage the data exchange between auto-

matic data processing resources. The system software of the

operational management processors performs control of the

local resources. The application software packages will be

designed to satisfy requirements of the Commands. The auto-

matic data processing requirements of HCCIS can be satisfied

from the following categories of application software.

1. Communications

UCCIS is a distributed data processing system and

requires dependable communications. The primary means of

communication between Commands is a switched multichannel

system which handles high speed digital data message exchange.

Using digital communications efficiently, the requirements 1

for voice radio communications are reduced. However, voice

communication between Commanders is still critical. The

so

- r --- - - - . . | ". " .

greatest volume of the HCCIS communications requirements is

digital data message traffic, both operator and machine

generated, through common user message switches. The mes-

sages range from short real-time messages to longer narrative

type messages. Voice communication is for rapid, person to

person exchange to modify, amplify or supplement graphics and

text information. Dedicated voice channels (hot lines) are

required between HCCIS centers to provide rapid communications

between specific key personnel.

The access between the HCCIS microcomputer and the

communications network is provided by the communications

access processing. The communication access processing

performs all those functions which are required to interface

with the various communications units while maintaining a

standard interface to the microcomputer. It performs the

following functions:

Protocol execution and conversion.

Signal format conversion.

Data rate conversion and buffering.

Message processing.

Communications system control.

The actual formatting of messages is a combined

function of the communications access processing and HCCIS

operating system. The HCCIS routine which generates the mes-

sage requirements provide the communications access process

with precedence and classification. The communication access

51

processing is a combination of program and equipment func-

tions. The equipment functions are associated with communi-

cations interface and performing routine tasks which include

timing, forward error correction, buffering, control and

monitor signaling. It is important to note that all HCCIS

communications are secure.

2. Data Distribution

a. Data Base

A data base is a set of data stored in some special

way in direct-access computer storage. This is the working

set of data which the HCCIS system is responsible for main-

taining. Data received by the system is stored in the data

base and is then available concurrently to all the HCCIS

centers. The identified data categories are:

(1) Own capabilities.

(2) Own situation.

(3) Enemy capabilities.

(4) Enemy situation.

(5) Other forces.

(6) Geographical environment.

(7) Plans and rules.

(8) Targets.

(9) Weather.

(10) Miscellaneous.

When a user in any center is waiting for the data

or must act upon the data received, he is alerted that the

data he needs is in the data base. In this way, every one

52

II~ - -X,

operates on the same and most current data and the transmission

of messages, reports, plans, and other information to each

center is reduced.

Everyone who operates in HCCIS views the data

base as being entirely on the local computer and containing

only the data needed for his functions. This is the logical

view of the data. At each Command a scratch pad area is

available for temporary, preliminary or unreviewed data which

can only be accessed at the center that stores it. Once the

data is finalized it is moved to the main data base, which

then makes it available to the other centers. The HCCIS data

base is distributed over all the HCCIS Commands. Although

each user assumes that there is only one copy of each piece

of data, there are multiple copies of some data. This

redundant data is maintained by the database management sys-

tem to improve processing speed and for data base recovery.

Data no longer in use must be eliminated from the data base

in order to control its size.

b. Database Management System

The database management system is the software

that handles the storage and retrieval of the records in the

data base. The DBMS cannot exist without a data base. The

DBMS is the active partner and the data base is the passive

one. As such the DBMS moves the data among the various corn-

puters so that it appears to the user that the entire data

base is accessible to him. The HCCIS data base is accessed and

controlled by the DBMS which performs the following functions.

53

(1) Provides Data Independence. This is the

independence of the application programs to structural changes

in the data base. If the programs that act on the data base

do not need to be modified and possibly not even recompiled

after the changes to the data base then it can be said that

there is a degree of independence. This capability serves

to minimize the reprocessing problem. Also the data inde-

pendence allows users to have logical views of the data which

differ from the physical structure.

(2) Access Controls. The DBMS provides the

capability to protect sections of the data base from un-

authorized access or modification. While the need for this

kind of facility varies, it always becomes more critical if

the data base is to be accessed from on-line terminals.

These controls protect classified data from access by un-

cleared users.

(3) The Data Base Access. The DBMS performs the

data base accesses for the HCCIS application programs.

(4) Data Integrity. This is the currency,

accuracy, and readability of the data stored in the data

base. Integrity is maintained by a combination of DBMS

functions, equipment, and procedures within the Command.

(5) Data Base Recovery. Recovery is the

restoration of the data base after a failure, to a state that

is acceptable to the users. What is "acceptable" may vary

from situation to situation, but it means at least a consis-

tent state with no erroneous data.

54

c. Query Language

The data base query language operates in conjunc-

tion with the DBMS and provides the HCCIS user with the

ability to:

(1) Perform queries to the HCCIS data base.

(2) Direct the data base query language to store
query messages for future and repeated use.

(3) Direct the data base query language to send
output to any of the available output
devices.

This query language can give for example the

location of each unit within a geographical area and its

status.

3. Messages and Reports

Since a message or a report format has been estab-

lished and entered into the data base, it can be recalled

and used by the operator. The format contains standard

information which is known to the system, such as date/time/

group, standard headers and routine indicators. Dissemina-

tion of messages and reports is aided by tables of distribu-

tion which need only to be entered into the HCCIS data base

once, with subsequent modifications to reflect changes.

4. Information Processing Tools

Information processing tools are the following.

a. Text Entry

The entry of a text into the HCCIS is achieved via

the keyboard of the terminal unless the text is in a machine 4

55

Nil2

readable form. Formatting is controlled by page size and

character counts for line and page totals.

b. Text Editing

This is needed for corrections and editing of

material using the text editing functions insert, delete,

replace and prirt.

c. Workload Administrator

This is a combination program and operator proce-

dure which allows operators to process more than one task at

a time according to their set of priorities. This is ac-

complished by the HCCIS system's maintaining two queues,

an incoming mesage queue and an action queue.

d. Task Identification

The two workload administrator queues are lists

of tasks which are awaiting operator action. Each entry in

the queue is identified by an abstract of the task which

allows operator recognition.

e. Task Queueing

The workload administrator will order tasks in

the queues according to priorities. When the priority of

the message is unspecified, the system will execute a default

routine.

5. Tactical Processing Tools

Tactical processing tools are the following.

a. Algorithmic Calculations

4 ICCIS provides a variety of automated calculations,

available upon request, to assist the Comander and his

56

.. . . I

staff. The rapidity and accuracy of these calculations

facilitates the investigation of alternative courses of

action.

b. Tactical Simulation

Within HCCIS, the capability to simulate proposed

tactics provides detailed measurement of the effectiveness

of the elements of the plan. Parts of the simulation are:

unit movement, snapshot simulation display, casualty damage

assessment.

6. Continuity of Operations

In order to accomplish his mission, a Commander re-

quires an uninterrupted flow of timely and accurate tactical

information upon which to make tactical decisions. Thus,

each Commander needs continuity of the flow of information

for command, HCCIS operations, and combat operation. A serious

interruption in the flow of information affects the continuity

of command and the continuity of combat operations. This

continuity is based on the following critical functions:

Transmit and receive digital messages.

Display friendly locations.

Display control measures.

Maintain data base.

HCCIS support ranges from a full system operation to

complete failure of the system so that no system support is

possible. The system degradation is characterized as minor

or major. In minor degradation an HCCIS center is experiencing 4
equipment or program malfunction or failure but HCCIS support

57

K1 - -. -- -, ,,, , _ _ _ _ _ _ - - - - - -

of the Command is not significantly impaired. In major

degradation an HCCIS center is experiencing equipment or

program malfunction or failure to a degree that significantly

influences the ability of HCCIS to support the Command in

carrying out its mission. Means and techniques used to

alleviate the effects of degraded HCCIS operations are the

following.

a. Spare Equipment

Degraded system performance is detected by operator

observation and by programs that continuously monitor system

performance (operational management processor). When system

degradation is detected, the operational management processor

or the operator executes programs that isolate the failure to

a particular item of the equipment. The operator replaces

the failed equipment with a spare (a quantity of spare equip-

ments is stored) and restores the center to full operation.

b. Use of Voice Radio

Voice radio nets are maintained, at all times,

regardless of the operating status of HCCIS. Thus with in-

creased use of voice radio we can reduce the influence of

system degradation.

c. Use Capabilities of Alternate Center

A degraded center may use the capabilities of a

fully operable center to perform processing functions. Input

data may be provided by the degraded center. Upon request

of the degraded center, the operable center searches its

+ 58

4 . = =.N ,. , rmi s m mmu u

files for the information, compiles the data and processing

results are sent to the requesting center. When system

degradation affects a center's capability to receive digital

messages, the storage capability of an operable center may

be used to store messages until the degraded center is restored.

d. Hard Copy Printout

Periodically, a hard copy of the friendly and

enemy situation display is produced automatically or on re-

quest of an operator. Hard copy printouts of information

which are considered critical for the combat operations are

also periodically produced by HCCIS. When a center's dis-

play capability has completely failed, the most current hard

copy printouts are used to construct a situation display.

E. PERSONNEL

Although Command functions and structure are not altered

with the introduction of HCCIS into their combat centers,

procedures and methods differ considerably from current

manual means. These changes lead to requirements for train-

ing to develop skills and knowledge not previously necessary

within a center, such as interaction with input keyboards.

No additional maintenance personnel is required at the

organizational level, since the only maintenance to be per-

formed to repair the failed equipments, is replacement.

Exercises provide the opportunity to establish demanding

requirements of large scale tactical environments. During

exercises operators demonstrate their ab;Llity in solving

59

I NIL NIII mV.

problems related to maintenance and system operation. HCCIS

has the capability of battle simulation, to generate simulated

inputs and to provide realistic feedback for operator actions

in order to improve the proficiency of HCCIS users. Some

other on-the-job training capabilities which aid personnel

in the development and maintenance skills, are:

Operator interaction.

System diagnostic text messages.

System performance monitoring.

Fault isolation.

F. RELIABILITY AND MAINTAINABILITY

1. Reliability

Reliability can be formulated as the probability that

the system will perform its intendent function over the stated

duration of time in the specified environment for its usage.

An HCCIS center is in failed condition when it is not capable

to support minimu* essential Command functions. Equipment

reliability requirements can be stated in terms of mean time

between failure. Center reliability can be stated in terms

of the probability of not reaching a failure condition within

a specified period. A minimum mean time between failures for

each HCCIS center has to be determined which reflects the

mean time between equipment failure occurring at a particular

center.

60

2. Maintainability

Maintainability is a characteristic of design and

installation which is expressed as the probability that an

item of equipment, center or system will be restored to

specified conditions within a given period of time when

maintenance action is performed in accordance with prescribed

procedures and resources. Center maintainability is defined

in terms of the time required to restore a center to its

specified operating condition. This time includes the time

required to identify, remove and replace the failed item and

also includes the time required to manipulate the software

portion of the system to achieve full operability.

Also the system must be available all the time and

individual centers must be available at a very high per-

centage of the time.

G. SECURITY

The protection of HCCIS is vital and imposes stringent

requirements for system security. The primary HCCIS elements

which implement this protection are HCCIS equipment and com-

puter program features. These features provide mutually

supporting protection of classified material as well as the

integrity of the system itself. Security measures are the

following.

1. Physical Protection

Physical protection measures are intended to reduce

or prevent disruptions to operations or loss of assets.

61

11 1-II _I... Jil _ II/ I - .. ,_ _ , . . .1J.. - i -,~i-m- -

These include access key locks, visual and audible alarms,

and sensors to identify interruption in device operation.

2. Error Detection

It is necessary for HCCIS equipments to have the

ability of detecting errors to minimize the probability of

inadvertent disclosure. Error detection functions monitor

memory and register operation whenever possible, causing

automatic interrupts to security programming.

3. Operational Features

HCCIS processors have security protection features

(e.g., interrupt system) designed into them in order to

accomplish security objectives.

4. Access Control

Disclosure or dissemination of classified material

or tactical information from unauthorized sources is abso-

lutely prohibited. Thus, the HCCIS system is required to

prevent this undesired situation. Some measures are: user

identification, authentication, security system monitoring,

Aand terminal operator training.

H. SOFTWARE ENGINEERING REQUIREMENTS

The implementation of the HCCIS with the characteristics

identified in the previous section would require software

engineering tools which give effective support for:

1. The programming of each type of computer to be used
(mainfrme, mini, micro).

2. Large programs development.

62- tU

3. "Off-the-shelf" software packages (e.g., database
management system, perhaps modified to suit HCCIS
peculiarities whose interfaces are independent of
the hardware used, and are compatible with the
programming language used for applications. These
would include:

(a) Operating system and device drivers.

(b) Database management system, including alerters
and query language.

(c) Networking (inter-coamend) including protocol
handling.

(d) Local network protocol handling at low and high
levels.

4. High quality software product especially in the areas

of reliability, maintainability and portability.

5. Real-time processing.

6. Security of data.

7. Concurrent execution of the same program but with
different data sets.

8. Structured programming of software modules, authenti-
cation, security system monitoring, terminal
operator training.

63

IV. APPLICATION OF ADA/APSE TO THE HCCIS

The previous chapters describe two assessments. Firstly,

the products of the US DoD's Ada program were examined from

a software engineering and software management viewpoint and

the potential facilities, benefits and penalties identified.

Secondly, the software engineering and management requirements

for the implementation of HCCIS have been identified to the

extent possible at this time. The rationale of this chapter

is to compare the two for compatibility. Specifically, the

comparison is made under the following headings:

Technically, are the software requirements of the target
HCCIS met by Ada/APSE?

Will Ada be cost effective in comparison to alternative
software technologies?

A. TECHNICAL COMPARISON

The software engineering requirements identified in

Section D of Chapter III are compared here with the facili-

ties to be provided by Ada/APSE.

1. The Programming of Each Computer Type to be Used

A major effort of the Ada system is to ensure that

software is portable among the number of different hardware

architectures on which the programs written in the language

must execute. It is also necessary to ensure that an Ada

program will produce the same results independent of which 4
coiler translates it and the computer on which it is axe-

outed. Support of such requirements was a fundamental

64

design goal of APSE. APSE provides a target-independent

program development environment on a central host computer

system.

Since HCCIS requirements can be satisfied using

microcomputers we can say that among the current technolo-

gies for microcomputers, the Ada programming language is the

best. Nettleton [Ref. 14], in his article on Embedded Micro-

computers, comparing several languages, says:

On a scale of 1 to 10, CORAL comes about 5 with
Pascal at 6, FORTRAN at 4, assembler at 1. So what
comes to 10? Ada, the new programming language for
the US DoD, is said by many to be the ideal language
for embedded computer applications. It is based on
Pascal but has a lot of extra features for embedded
applications and unlike many other languages, is
rigorously defined. Ada will also be well supported
and will be available for all commonly used computers.

Also in the article, "Ada for the Intel 432 Microcomputer"

by Zeigler et al. [Ref. 13], we note, "Ada represents a new

era in language standards and software portability. It is

the primary language of Intel's new micromainframe, which

directly supports many of its features".

2. Large Program Development

HCCIS is designed to support the training of Hellenic

Forces by giving to the Supreme Commander all the facilities

to plan, direct and control the Forces during periods of peace

and war. This implies that the development of HCCIS con-

siste of a large scale programing effort which requires a

programming language with many features to support it.

Ada and APSE are designed with the fundamental design

goal to support the development of large programs that will

65

S "._.'.'' '"...

be used over a long period of time. This can be achieved

principally through the separate compilation and library

facilities. Another feature that encourages prograuming

in the large is the package feature. Of course, APSE is

designed to support large teams of programmers as mentioned

in Section B.3.a of Chapter II.

3. "Off-the-Shelf" Hardware-Independent Software Packages

a. Operating system and peripheral drivers. The

Ada run-time support library provides the equivalent of the

traditional real-time executive plus drivers for the standard

peripherals (Section B.2.g(l) of Chapter II). Drivers for

any new standard peripherals must be procured.

b. Packages for DBMS and networking. It is quite

possible that application-oriented packages will be developed

for the Ada target systems over the next few years. For

example, a DBMS ("Adaplex") is currently being developed

by Computer Corporation of America. However it is not certain

whether any such development will meet the particular HCCIS

requirements. If not, they might need to be procured, either

written totally in Ada or with an Ada compatible interface

which can be standardized across HCCIS.

4. High Quality Software

As discussed (Section C.l.g of Chapter 1I), the use

of Ada and APSE has a major contribution in the promotion of

software quality and development productivity, particularly

in the areas of reliability, maintainability and portability.

While Ada incorporates most of the features found in

66

programming languages such as FORTRAN, COBOL, PL/1 and Pas-

cal, it also provides a set of features that support well-

accepted software engineering principles. Ada produces

software that is more:

(a) Reliable. Strong typing and procedures and

module specifications reinforce consistent and complete

coding; most of the software written in Ada can be checked

and verified at compile-time; and the high-level nature of

Ada reduces the amount of coding and, therefore, the chances

for error.

(b) Portable. As a standard language, Ada must be

supported in the same manner on many different systems.

Ada is highly machine independent which supports more gener-

alized solutions. Machine dependencies can be isolated and

introduced in a very controlled manner through the use of

packages and representation specifications.

(c) Readable and Maintainable. Abstract data types,

especially enumerated types, enable the program to be defined

in problem-oriented terms and values which enhance documen-

tation. Language constructs and terms are employed in a

well-defined consistent manner and are very English-like,

which also enhances documentation. The modular structure

of Ada (i.e., subprograms, modules, and separate compilation)

supports the loose coupling of software which, in turn, im-

proves maintainability.

All these features have a significant contribution

in the promotion of software quality.

67

5. Real-Time Processing

An obvious objective on which HCCIS system is based

is real-time processing, because it is important and neces-

sary for most military programming actions.

The Ada language is the best for this purpose. No

other language can improve on Ada in this area. This language

provides explicit constructs for parallel processing such as

mutual exclusion, real time interrupts, asynchronous termina-

tion. Ada contains the fundamentals of a real time execu-

tive. Presently such executives are implemented via several

routines particular to each operating system. In Ada, de-

sired executive control and synchronization of independent

tasks can be obtained by proper selection of built-in language

constructs. Incorporation of these features directly in the

language not only reduces implementation efforts but also

establishes a consistent approach across systems. Also the

Ada language provides constructs for the real time inter-

facing of external devices to their software device drivers

(Section B.2.c of Chapter II). The Ada library holds the

routines for run time support, which must be procured for

each new target computer.

6. Security of Data

In the case of military data bases, the information

is considered to be of such value that no cost is spared 4

'to insure data security. Therefore security of data is

extremely important for UCCIS system.

68

1-..

The database management system is responsible to

provide this security. This is the appropriate software

function to protect data from unauthorized access. At this

time only very specialized hardware and operating system's

features permit secure systems to be built. Currently no

validated secure systems exist, however Ada Plex DBMS is now

under development and it is believed that after a few years

it will be available in the form which has solved the security

problem.

7. Concurrent Execution of the Same Program

This very useful facility for the HCCIS system can

be achieved by using re-entrant code. Multiple users can

execute the same program in the main memory without needing

their own copies of code. Production of re-entrant code is

more complicated, but well worth the effort because of sub-

stantial savings in the use of memory. The Ada language

supports the production of re-entrant code.

8. Structured Programming

Ada is 100% suited in this area. It is a strongly

typed language in the sense that the type of every variable

and expression can be determined at compile time and checked

by the compiler. This reduces the run-time errors in programs

and enhances reliability as mentioned above. Program modules

include subprograms, packages and tasks in a block structured

format which enables nesting. The control structures (condi-

tional branching, case statement, iteration structure and exit

statement) are well engineered to support structured coding.

69

In summary the combination of Ada and APSE is judged

to fulfill the technical requirements for use in HCCIS. Some

special packages (e.g., DBMS) may need to be procured to

suit the special real-time requirements of HCCIS. Also, the

implementation of secure systems which have users at various

levels of security is a challenge which is independent of

Ada. However, the use of Ada will probably make the imple-

mentation easier.

B. ALTERNATIVES TO ADA

There are several programming languages which may be used

in ECCIS and the differences between them can have a signi-

ficant effect on the quality of the finished product. The

languages which are examined are the present military pro-

graining languages: Assembly, FORTRAN 77, CMS-2, JOVIAL

J73, and the new one, Ada.

1. Assembly

Assembler code is always a first choice for many be-

cause it is inuediately understandable if you know the com-

puter's hardware and, for a small program at least, requires

little software expertise. However, assembler code is tedi-

ous to write and difficult to read. This code is fine for

small programs, but coding a large system in assembler code

is not economical at all.

2. FORTRAN

Fortran is dominated by its orientation to scientific,

numeric computing, but it provides low level control structures,

70

.. . -,,m ie i~ui llm•I l ------.-- -

1/O functions, libraries, abstraction facilities and weak

typing. Fortran has no real-time processing features or

exception handling and leads to low productivity.

3. C1S-2

Although CMS-2 corrects some shortcomings found in

Fortran, it still suffers in strong typing, and the 150

keywords indicate its complexity for both implementation

and maintenance programmers. Also, and most important, CMS-2

has no real-time constructs and its reliability is limited.

4. JOVIAL J73

Beyond CMS-2, J73 has included the basis for strong

typing, fundamental exception handling, tighter control of

functions and procedures and slight improvements in control

structures. The overall effect of these features is an in-

crease in reliability and maintainability. J73 introduces

several improvements to functions and procedures but it has

no real-time structures and its portability is limited.

When considering other languages for use in HCCIS

the following points are relevant.

The Ada language defines constructs sufficient for

complete programming of real-time systems. The MAPSE pro-

vides the minimum of facilities necessary for efficient soft-

ware development. The full APSE provides further highly

desirable facilities.

The full cost benefits of using Ada depend on its

standardization. In cases where a single language can be used

71

exclusively, Ada and APSE are likely to be the most cost

effective technology.

72

(iu1771

V. CONCLUSIONS

This thesis has examined the mutual relevance of two

programs: The US DoD's Ada high order language standardi-

zation program, and the Hellenic Command Control and Infor-

mation System program.

The US DoD's Ada high order language standardization

program is approximately at the half way stage, with the

language definition complete but with the requirements for

the Ada Programming Support Environment still being refined.

The program's outcome can be predicted with some confidence.

The Hellenic Command Control and Information System is

a future program expected to start in 1988.

The following points summarize the conclusion of this

thesis.

a. Ada will be the first language system to provide

constructs for the complete programming of embedded

computer systems, together with full programming

v support.

b. Ada's existence is assured through the continuing

backing of the US DoD. Experimental compilers are

available now and an approved APSE is expected in

1984/1985. The US DoD intends all of its new

embedded computer systems projects to be using Ada

by the end of the decade.

73

c. Ada and APSE should offer substantial benefits to

military software procurement, especially in the

areas of software quality and productivity, while

having minimal penalties. It is considered that

Ada and APSE will be the best language system to

be available in the mid-1980's.

This thesis examined the programing language require-

ments of HCCIS. These can be satisfied by Ada, and APSE

could provide the necessary user support. Software systems

programmed in Ada require no external operating system.

However, the HCCIS program might need to procure software

packages, not found in Ada/APSE, such as database management,

network handling, and non-standard peripheral drivers. The

tinascales for HCCIS software development of 1988 to 1995

should be met by the availability of approved APSE products

in 1984/1985. By the end of the 1980's, the APSE will be

widely available and there will be much experience in its

use.

74

if

LIST OF REFERENCES

1. Skees, W.D., Computer Software for Data Communications,
1981.

2. Jensen, R.W. and Tonies, C.C., Software Engineering,
Prentice-Hall, 1979.

3. Grenn, T.F., Software Error Detection Model, M. S. Thesis,
Naval Postgraduate School, Monterey, 1975.

4. Baker, C.E., The Navy's Automated Command Management
Information System, M.S. Thesis, Naval Postgraduate
School, Monterey, 1972.

S. Clifford, G.A., An Analysis of Requirements for the
Development of an Intelligence and Communication Model,
M.S. Thesis, Naval Postgraduate School, Monterey, 1979.

6. Johnston, F.W. and Dawson, M.T., An Apprsciation of Army
Divisional Command and Control, M.S. Thesis, Naval Post-
graduate School, Monterey, 1980.

7. Rogers, M.A. and Myers, L.M., An Adaptation of the Ada
Lanquage for Machine Generated Compilers, M.S. Thesis,
Naval Postgraduate School, Monterey, 1980.

8. Smith, S., "Requirements Definition and Design Guidelines
for NMOI," IEEE National Aerospace Electronics, V. 1, 1980.

99. Scheer, L.S. and McClimes, M.G., "DoD's Ada Compared to
Present Military Standards HOLs.. A Look at New Capabili-
ties," IEEE National Aerospace Electronics, V. 1, 1980.

10. Ledgard, H., Ada--An Introduction, Springer-Verlag, 1980.

11. Barnes, J.G.P., "An Overview of Ada," Software--Practice
and Experience, V. 10, November, 1980. A

12. Wolfe, M.I., and others, "The Ada Language System,"
Computer, V. 14, June 1980. A

13. Zeigler, S., and others, "Ada for the Intel 432 Micro-
computer," Computer, V. 14, June 1981.

14. Nettleton, C.C.F., "Embedded Microcomputers," Mini-
* Micro Software, V. 6, 1981.

15. Carlson, W.E., "Adas A Promising Beginning," Comuter,
V. 14, June 1981.

75

16. Brender, R.F. and Nassi, I.R., "What is Ada," Computer,
V. 14, June 1981.

17. Wegner, P., "A Self-Assessment Procedure Dealing with
the Programming Language Ada," Communications of ACM,
V. 24, October 1981.

18. Shaw, M., and others, "A Comparison of Programming
Languages for Software Engineering," Software--Practice
and Experience, V. 11, 1981.

19. Shumate, K.C., "Ada--New Language that will Impact
Commercial Users," Data Management, V. 19, August 1981.

20. Eventoff, W., Anderson, G., and Price, R., "Ada: A
Significant Software Engineering Tool," Mini-Micro Systems,
V. 14, April 1981.

21. Stenning, V., and others, "The Ada Environment: A
Perspective," Computer, June 1981.

22. Goodenough, J., "The Ada Compiler Validation Capability,"
Computer, June 1981.

7I

i4]q

76

I.

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22314

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93940

3. Department Chairman, Code 52 1
Department of Computer Science
Naval Postgraduate School
Monterey, California 93940

4. Professor Uno R. Kodres, Code 52Kr 1
Department of Computer Science
Naval Postgraduate School
Monterey, California 93940

5. Professor Bruce J. MacLennan, Code 52M1 1
Department of Computer Science
Naval Postgraduate School
Monterey, California 93940

6. Hellenic Navy General Staff 3
Branch A
Stratopedon Papagou, Holargos
Athens, GREECE

7. CDR Apostolos Koutsotolis 2
Leoforos Papagou 69
Athens, GREECE

77

----- ------- - - -- ~ - -- - --- -- -

